Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available May 3, 2026
- 
            We study learning the directed acyclic graph (DAG) for linear structural equation models (SEMs) when the causal structure is a polytree. Under Gaussian polytree models, we derive sufficient sample-size conditions under which the Chow–Liu algorithm exactly recovers both the skeleton and the equivalence class (CPDAG). Matching information-theoretic lower bounds provide necessary conditions, yielding sharp characterizations of problem difficulty. We further analyze inverse correlation matrix estimation with error bounds depending on dimension and the number of v-structures, and extend to group linear polytrees. Comprehensive simulations and benchmark experiments demonstrate robustness when true graphs are only approximately polytrees.more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            Techniques of matrix completion aim to impute a large portion of missing entries in a data matrix through a small portion of observed ones. In practice, prior information and special structures are usually employed in order to improve the accuracy of matrix completion. In this paper, we propose a unified nonconvex optimization framework for matrix completion with linearly parameterized factors. In particular, by introducing a condition referred to as Correlated Parametric Factorization, we conduct a unified geometric analysis for the nonconvex objective by establishing uniform upper bounds for low-rank estimation resulting from any local minimizer. Perhaps surprisingly, the condition of Correlated Parametric Factorization holds for important examples including subspace-constrained matrix completion and skew-symmetric matrix completion. The effectiveness of our unified nonconvex optimization method is also empirically illustrated by extensive numerical simulations.more » « less
- 
            Anandkumar Animashree (Ed.)Techniques of matrix completion aim to impute a large portion of missing entries in a data matrix through a small portion of observed ones. In practice, prior information and special structures are usually employed in order to improve the accuracy of matrix completion. In this paper, we propose a unified nonconvex optimization framework for matrix completion with linearly parameterized factors. In particular, by introducing a condition referred to as Correlated Parametric Factorization, we conduct a unified geometric analysis for the nonconvex objective by establishing uniform upper bounds for low-rank estimation resulting from any local minimizer. Perhaps surprisingly, the condition of Correlated Parametric Factorization holds for important examples including subspace-constrained matrix completion and skew-symmetric matrix completion. The effectiveness of our unified nonconvex optimization method is also empirically illustrated by extensive numerical simulations.more » « less
- 
            Path-based solutions have been shown to be useful for various graph analysis tasks, such as link prediction and graph clustering. However, they are no longer adequate for handling complex and gigantic graphs. Recently, motif-based analysis has attracted a lot of attention. A motif, or a small graph with a few nodes, is often considered as a fundamental unit of a graph. Motif-based analysis captures high-order structure between nodes, and performs better than traditional "edge-based" solutions. In this paper, we study motif-path , which is conceptually a concatenation of one or more motif instances. We examine how motif-paths can be used in three path-based mining tasks, namely link prediction, local graph clustering and node ranking. We further address the situation when two graph nodes are not connected through a motif-path, and develop a novel defragmentation method to enhance it. Experimental results on real graph datasets demonstrate the use of motif-paths and defragmentation techniques improves graph analysis effectiveness.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available